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Abstract

Although subgrid-scale models of similarity type are insufficiently dissipative for
practical applications to large-eddy simulation, in recently published a priori analyses,
they perform remarkably well in the sense of correlating highly against exact residual '
stresses. Here, Taylor-series expansions of residual stress are exploited to explain the
observed behavior and “success” of similarity models. Until very recently, little atten-
tion has been given to issues related to the convergence of such expansions. Here, we
re-express the convergence criterion of Vasilyev et al. [J. Comput. Phys., 146 (1998)]
in terms of the transfer function and the wavenumber cutoff of the grid filter.
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1 Introduction

In contrast to direct numerical s1muIatlon (DNS), m which alt energetxc scales of motion are
resolved on a fine grid, in large-eddy snnulatmn (LES), the spatially filtered Navier-Stokes
equations (FNSE) are solved numerically on a relatxvely coa.tse gnd For incompressible flow,

and in tensor notation, the FNSE are given by e
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where u,. is the velocity vector, p is the pressure, and ng xs  the subgnd-sca.le (SGS) stress
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Here overlines denote grid-filtered quantities, and Re is the Reynolds number.

The residual-stress tensor incorporates the effects of the unresolved scales of motion upon
the resolved scales. It is customary in LES to model these effects, for which there exists a
variety of possible models. In 1991, Germano et al, [1] introduced the concept of dynamic
modeling, which exploits the resolved-turbulent-stress tensor £;;, a computable quantity that
is extracted by applying an explicit secondary filter-the test filter—to the resolved velocity
fields as follows:

L = el — TGy ' (4)
Here hats denote test-filtered quantities. In general, the test- and grid-filter widths, A and

A respectively, may differ. For later convenience, we denote their ratio by r = A /A.

Recently, interest in SGS models of similarity type (e.g., Liu et al. [2], Stolz and Adams
[3], and Pruett and Adams [4]) has revived (despite the fact that these models are typically
insufficiently dissipative for stand-alone applications to LES). Under certain conditions, re-

markably high correlations between 7x; and L have been observed in a priori analyses based
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on experimental (Liu et al. [2]) and computational (Pruett and Adams [4]) data. On the

basis of their observations, Liu et al. [2] propose the stress-similarity model
it & cL Ly ()

where ¢ is simply a constant.

In this paper, we exploit Taylor-series expansions of the grid- and test-filter op;;ators fo
analyze the relationship between the tensors 7 and Ly and to optimize the value of ¢, in
Eq. 5. The convergence properties of such expansions are subtle, and attention is devoted
herein to establish a criterion for convergence. For simplicity, we apply filtering only in
the z direction and suppress the y and z coordinates and the time t. However, numerical
experiments (Pruett and Adams [4]) suggest that the results carry over to multi-dimensional

filters.

2 Ta_ylor-Seriesv Analyses

Although the use of fixed-width filters is common in LES, in our judgment, this is an ill-
advised practice that usually leads to the contamination of the SGS dissipation by the
truncation error of the numerical scheme. Recently, the utility of tunable (one;parameter)
filters has been recognized (e.g., Vasilyev et al. [6] and Pruett and Adams [4]). One-
parameter filters permit the filter width A (or preferably for this work, the wavenumber
cutoff k) to be specified independently of the grid increment Az. In our view, ke should
be specified on the Vbasis of physical consid;;r;xtions; that is, the cutoff should lie in the
inertial range of the Kolmogorov spectrum. On the other hand, Az should be determined
by numerical considerations; that is, by the grid resolution necessary to resolve the smallest
eddies for the numerical scheme of choice. The dimensionless product a. = k.Az defines the
cutoff parameter to remove the degree of arbitrariness. To this end, we exploit one-parameter

filters of Pade type, the details of which are relegated to the Appendix.

The following discussion applies to & priori analyses, in which DNS data are filtered to



extract the exact residual stresses and their modeled counterparts. By implication, in this
section Az = Azpns. As discussed in the Appendix, a discrete filter can be represented by
a Taylor-series expansion in the grid increment Az. For example, if @, is a filtered velocity
field, then

| iy (2) = uk(z) + a1ui(z) Az + agui(z) Az? + a3y (z)Ax® + (6)

Here, primes denote (partial) derivatives with respect to . For notational simplicity, the
fa.ctonals a.ssocxated w1th the Taylor expansnon have been absorbed into the coe{ﬁclents a;.

As shown in the Appendxx the Taylor senes of a filter 1mplm its transfer functlon and vice
versa. In general, a filter is said to be of order m if the first non-vanishing coefﬁcnent of its
Taylor series is am. By apblying Eq. 6 to Eq 3, we obtain a Taylor séries for the residual

stress, namely
i = (a3 — 282)ulutAz? + (@102 — 3a3)(ulul + ujul)Az® + .. (7)

Because the coefficients a; depend implicitly upon a, it is useful to regard 7y = 7Tii(ac). As
the tensor 7, arises solely from the quadratic nonlinearity of the Navier-Stokes equations, it
is quadratic at leading order in Az, provided that the filter is of either first- or second-order.
On the other hand, if the filter is of order m > 2, then 7 is of leading order m.

With the help of Mathematica, a simiiar expansion of Ly, leads to
Ly = (a3 —2a)ufuir?Az? + (a3r? - 2a,8;r% + ayasr® — 3a37)(upyf + ujup)Az® + ... (8)

where the test and grid filters differ only in their respective widths, whose ratio is 7. In (pre-
ferred) terms of grid- and test-filter cutoffs, (k.)g and (kc)t, respectively, r = (kc)a/ (k;)T.
Clearly, L = Lu(ae, 7). By comparing Eq. 7 and Eq. 8, we conclude that the SGS stresses
are approximated to leading order by

TWR T (©)

whereby ¢, = 1/r? in Eq. 5. How good is the approximation? From Eqgs. 7 and 8, we obtain
the approximation error '

L
Eulae,r) =1 = -;2-'“-‘- .='{3a3(r -1)+a102(3 =~ 1) —waﬂ (uu! + ujuf)Az® + .. (10)
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from which we conclude the following:

1. If the filter is of either first- or second-order in Az, then the approximation error
(Eq. 10) is of higher order (O(Az®)) than is the subgrid-scale stress (O(Az?)), and
the approximation could be accurate provided that there is separation between the

contributions at various orders (a topic discussed shortly).

2. If the filter is of order two (a; = 0, ag # 0) then

Ex = 3a3(r — 1)(uiu! + wjul)Az® + ... (11)

3. Although r = 1 is precluded in LES for reasons to be addressed shortly, r = 1 is
‘optimal for @ priori analyses because, for second-order filters, the leading-order error

vanishes.

4, The approximation that results from the optimality condition r = 1 is simply the

scale-similarity model proposed by Bardina et al. [5], namely 7y = UxT; — Uil

Whenever the grid and test filters differ in their Taylor coefficients, the situation is
somewhat more complicated. Here, we presume that the grid and test filters are each of

second order and symmetric, in which case

() = ux(z) + aou(z)A2? + aul) () Azt + ... (12)

a(z) = w(z)+ boul(x)A® + byuf’ (z) Azt + ..

Applying Eq. 12 to Eq. 3, we obtain

T = —2aujuiAz® + [(a2 — 6a4)(u2ﬁf') — day(uiul® + wu®]Azt + O(A®) (13)
Similarly, from Eqs. 12 and 4, we derive
Ly = —2byubul Az® + [(63 — 6by) (ullul) — (4bg + 2a2b7) (ufu® + uful?)Az* + O(Az%) (14)

A comparison of Egs. 14 and 13 reveals the following approximation to be correct to leading

order:

Th N _‘}_2_5“ (15)

by
5



If the grid and test filters are identical (b; = a;) then ay/b; = 1, in which case most of the
leading-order error drops out to yield

By =1 — L = 2a3(upt” + uu)Az* + O(Az°%) - (16)

By either approach, we conclude that the use of identical grid and test filters should produce

optimal results in a priori analyses.

The present analysis corroborates and provides an explanation for the observations of
Liu et al. [2] and Pruett and Adams [4], whose.a priori analyses were based on experimental
and computational data, respectively. To be specific, Liu et al. [2] observe negligible cor-
relations bétween the residual stresses and tﬁeif Smagdﬁﬂskmeodeled counterparts when
using spectral filters, which act with exponential order. Our resﬁl»tsusuggest that, because the
Smagorinsky model is of second-order in Az, the model is appropriate only in the context of
first- or second-order grid filters. Moreover, for spatial top-hat filters (which are of second
order), Liu et al. [2] observe the highest coreelations between 7y and Ly for r = 1, which we
have shown to be optimal. In a priori analyses from DNS of isotropic turbulence, Pruett and
Adams [4] observe correlations of the form C(7u, L) of nearly. unity whenever the filter is
weakly to moderately dissipative (/2 < a. < 7) and r = 1. As the dissipation increases, the
correlation coefficient diminishes gradually, but it remains surprisingly high (C > 0.8) even
for quite dissipative filters (a, =~ 0.45). Furthermore, they observe correlations to degrade

somewhat as r deviates substantially from unity.

3 Taylor-Series Convergence

Although Taylor-series analysis is frequently exploited to develop or analyze SGS-stress mod-
els (e.g., Rogallo and Moin (7] and Horiuti [8]), the approach has sometimes been criticized
because of uncertain convergence, an issue that has received little attention until the recent
work of Vasilyev et al. [6]. In practice, Taylor-series aﬁprbxitnation is most useful if the
leading-order error is relatively small, which in turn requires that the series converges fairly

rapidly. Here, for completeness, we draw on the work of Vasilyev et al. [6] and re-express
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their convergence criterion in terms of the transfer function and wavenumber cutoff of the

- grid filter.

Let u denote one of the three velocity components, and, for simplicity, presume that u
is periodic on [—x, 7] and contains no wavenumbers higher than kmax, a finite integer such
that kmax > k5, the Kolmogorov wavenumber. It will be useful in later discussion-to think
of kmax as the wavenumber cutoff for full resolution of quadratic nonlinearities in DNS, in

which case, for a spectral numerical scheme
kmaxAzpns =7 o

Equation 17 is simply the Nyquist criterion of signal processing. Given the assumptions

above, the velocity field and its derivatives may be expanded as finite Fourier series; that is,

kmax kmax o
uwiz)= Y, Ue*® and uv™(z)= Y (k)"Ue*™® = .  (18)
k=—kmax k=—kmax N

where + = /-1, and Uy is the k-th (complex) Fourier coefficient of u. Slightly adapting
Vasilyev et al. [6] (who also assume finite kmax), we obtain a bound on the magnitude of

the m-th'derivative of u, namely

kmax
™@)| < X k™
k=-kmax
kmax 1/2 kmax 1/2

k=-kmax k=—kmax :

Emax 1/2
= \/E(z 3 k"'"‘) - (19)

k=1 ; ‘

kmax 1/2
< V2E ( /0 k""dk)

o= kmax 1/2_ m Ekmax
- 2E(2m+1 = Fmax m+1/2

where Holder’s inequality is used to proceed from the first to the second step of Eq. 19, and

where E = Y fmax _ |Uy|? is the total “energy” as per Vasilyev et al. [6]. Recall from Eq. 6

k=-kmax

that -
a(z) = Y amu™(z)A2™ (a9 =1) (20)

m=0 )
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By Eq. 19

> Iamu‘""(z)Az"‘l < 2 o[ R

(kmaxAz)™ @
m=0 m=0 +1/2 max z) ()

Thus, the series in Eq. 20 is absolutely convergent provided that the series on the right-hand

side above (Eq. 21) converges. By the ratio test, the power series in kmaxAx above converges

provided that
hm lam+1 I

m—-»oo' I

axAz <1l . (22)

As discussed in the Appendix, the coefficients a,, depend on derivatives of the transfer
function H(a, o) of the filter as follows:

HM™)(0, a)

(ml)em @)

am(ae) =
From Egs. 17, 22, and 23, we obtain the followmg convergence criterion in terms of the filter’s
transfer function and its cutoff:

' lim T ‘HQM'I)(O ac)'
m—+00 (m + l) IH( )(D ac)l

<1 (24)

For filters whose stencils and coefficients are symmetric, the appropriateg criteria are

m—+oo |a,m| (2m + 2)(2m + 1) IH(?m)(O ac)l

<1 (25)

By the Cauchy product theorem, Lf the convergence of the Taylor series for T is guaranteed
by Eq. 24 or Eq. 25, then the seties fer U:T; also converges. Moreover, by definition, kmax
is sufficiently large so that quadratic nonlinearities are well-resolved in DNS. It follows that
if the series for ¥, converges, so must that for Uz%;. These two additional considerations
guarantee that the Taylor series for 7,4 (Eq. 3) converges provided Eq. 24 or Eq. 25 is
satisfied. For symmetric, fully explicit filters (see the terminology in the Appendix), Eq. 25
_ holds for all values of the cutoff parameter such that the off-center weights remain of the

‘same sign.

We now specialize the analysis to the symmetric, second-order Pade filter, whose transfer
function H(o, a.) is given in Eq. 34 and Fig. 1 of the Appendix. For this class of filters, the

dependence upon a. of the convergence criterion is subtle. Originally, we conjectured that
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m 0] 1 2 3 4 5
G2m 1]0.75 | 0.4375 | 0.2521 | 0.1453 | 0.0838
[azmea2]/1azm] | NA | 0.75 | 0.5833 | 0.5762 | 0.5766 | 0.5766

Table 1: Taylor-series coefficients for Pade filter with o, = 7/3.

Eq. 25 holds at least for all 7/2 < a. < 7. However, attempts at fdrmal proof failed. Subse-
quent numerical experimentation over a range of cutoffs suggests (but does not guarantee)
that Eq. 25 is satisfied approximately for ~0.1< ¢ = —cos(a.) <1, and, as a general rule
of :thumb, the more dissipative the filter (the smaller o), the slower the convergence. (This

is not entirely accurate, but a truer statement is too detailed for the present forum.)

. Here, we will be content to consider three specific cutoff values, two for which the conver-
genc;: criterion Eq. 25 is satisfied, and one for which it is not. First, for DNS, a. = 7. From
Eq. 34, H(a,7) = 1, independently of a. Consequently, T = ux and 7iq(7) = TG¥; — Ty =
ugty — ugty = 0. Similarly, for r = 1, Ly(7, 1) = Ul — Ul = G — Tl = e —wety = 0.
As expected, in the DNS limit, the filters turn off, the residual stress vanishes, the resolved
turbulent stress also vanishes (for r = 1), and the resulting Bardina model is t;rivially exact.
Second, for the special case a, = 7/2, |[H®™(0,7/2)| = 1/2 for all m > 0, in which case
Eq. 25 is clearly satisfied. Third, we consider &, = /3 (( = —0.5), for which Table 1
presents the first few coefficients azy and their ratios. Although the coefficients eventually
diminish at an apparently constant rate, that rate is too slow to satisfy Eq. 25. For suffi-
ciently dissipative Pade filters, the Taylor coefficients apparently grow at an asymptotically

constant rate.

Returning briefly to the (convergent) case for which a, = 7/2, we have

Tri(7/2) = —-—uku,Az [ llﬁu”ui' T (u;,ufa) up (3))] Azt + .. (26)
and v y
Ey(r/2,1) =Ty — L = 8 (u;c“}a) + uu (3)) Azt + ... (27)

Careful examination of Eqs. 26 and 27 reveals that the leading order error term above

could be large relative to the magnitude of the residual stress. Indeed, criterion Eq. 25
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guarantees only that the terms of Taylbr expansions eventuslly diminish, not necessarily
that the leading order approximation error is'small. One might expect that higher order
corrections to the expansion for £ would be necessary before the similarity model (Eq. 5)
is even approximately valid. (See, for example, the generalized similarity model of Stolz
and Adams [3].) In this light, that correlations C(7u, L) are typically observed to be
high (Pruett and Adaxﬁs [4]) even for quite dissipative filters (whose Taylor seri&s:mé.y even
dxverge) is at first intriguing. With regard to LES, there are three ameliorating fa.ctors Fxrst
in the inertial subrange, the Fourier coefficients U decay as k"'"/ ¢ in amplitude. Second for
kmax 2 k 2 ky, the Fourier coefficients decay even more Vra.pldlyv due to the effectiveness
of viscosity. Neither factor has been taken into account. Tlurd and dominant, the bound
expressed by Eq. 19 is extremely pessimistic; equality holds only when all Fourier components

align in phase, an unlikely scenario in a turbulent flow. -

4 LES

" Finally, we turn to an implication of our analysis to LES. For a priori analyses, there is no
prohibition on the use of identical test and grid filters. However, r = 1 is disallowed in LES
with secondary ﬁltenng as the following line of reasoning suggests (and as also noted in Liu
et al. [2]) For LES Az = Azpgs. Recall that (kc)g and (k.)r denote the grid- and test-
filter cutoffs, respectlvely, where we now presume (k) < (k.)g. By design, once (k.)g is
established from physical considerations, then (for a spectral numerical scheme) the Nyquist
criterion (k;)gAzLgs = (ac)c = 7 establishes the appropriate grid increment Az es. By

definition, (k.)rAzLgs = (ag)r. Thus,

TuBe = E’Zﬂi =@n 2! (28)

In LES, it is common to use rpgs = 2. Attempts to use r.gs = 1 yield (a;)t = 7, which
turns off the secondary filter. However, at least in theory, there is no reason why similarity

models with r > 1 are not viable for LES.
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5 Conclusions

In conclusion, Taylor-seties expansions of residual stress are iiseful for developing and analyz-
ing SGS models for LES. In particular, Taylor-series analysis reveals the explicit dependence
of the residual stress on the grid filter, and thereby reveals potential model-filter inconsis-
tencies. Moreover, such analysis underscores the desirability of one-parameter filters, whose
cutoffs can be tuned independently of grid resolution. The degree of usefulness of Taylor-
series expansions, however, depends ultimately on how rapidly the series cbnvérgéi A rigorous
convergence criterion has been developed that is expressed in terms of the transfer function
and wavenumber cutoff of the grid filter. As a rule of thumb, the more (less) dissipative the
filter, the slower (faster) the convergence. Taylor-series expansions have then been applied
to the analysis of the similarity models of Bardina [5] and of Liu et al. [2]. The analysis
corroborates and appears to explain a number of observations regarding such models (e.g.,
Liu et al. [2] and Pruett and Adams [4]). In @ priori analyses, éimilarity »models typically
perform far better than expected based on the mathematical analysis herein;, which suggests

that a refined analysis is both desirable and possible.

Acknowledgments

For helpful discussions, the first author is most grateful to Drs. Klaus Adams of ETH, Ziirich,
Garry Pantelis of ANSTO, Australia, and Ugo Piomelli of the University of Maryland.

11



Appendix: One-Parameter Pade Filters.

Following Lele [9], a discrete, second-order, one-parameter ({) Pade filter is constructed by

considering the symmetric pointwise scheme

(firt Fi+lfin=afi+ g(fe-1 +fi) 3 (=1,2,.n-1) (29)

Various treatments are possible for the boundary nodes i = 0 and i = n. However, the
simplest tack is to impose no filtering at the boundaries. In matrix form Mf = Ef, where
M and E are tridiagonal.

The action of the filter above on the single Fourier mode exp(tkz) yields the complex

transfer function
_ a-+bcos(a)
1+2¢ cos(a)

where o = kAz. For appliéations to LES, we consider only ldw—ﬁd?b filters, for which

H(a) (30)

H(0) = 1 and H(r) = 0. In combination, these constraints imply b = a = 0.5 + (.
Admissible values of the parameter are —% <(< % Whenever ( = 0, M is the identity
matrix, and the filter is fully ezplicit. The fully explicit case corresponds to a discrete top-hat
filter with weights at adjacent nodes of {1/4, 1/2, 1/4]. Otherwise, the filter is implicit. The
value { = 1 yields M = E, which turns off the filter. For all admissible ‘parameter values,

the matrices M and FE are diagonally dominant with positive diagonal elements, in which

case the filter operator L = M~1E is positive semidefinite.

By analogy to discrete differentiation operators, to each discrete filter is associated a

Taylor-series expansion of the form
F(z:) = £(z:) + 01 (@) Az + a2 f"(2:) Az® + a3 f" (2:) Az® + .. (31)

Here, for notational simplicity, the factorials in the Taylor series have been absorbed into
the coefficients a;. By applying the Taylor-series representation of the filter to exp(tkz;), we

obtain the corresponding Taylor series of the transfer function, namely

H(a) = 1+ a,(t@)+ az(te)? + as(ta)? + ... (32)
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Evaluating successive derivatives of Eq. 32 at a = 0 yields

_ H™(0) L
Om =, (mt)em A (33)

Phus, the Taylor series implies the transfer function and vice versa. In general, a filter is of
order m if its ﬁrst non-vanishing Taylor coefficient is a,,. Filters associated with symmetnc
stencﬂs are of even order with purely real transfer functions. In partlcular, the Pade scheme

above is of second order (provided ¢ # 0.5).

The coefficients of the Taylor series of Eq. 31 are functions of the parainéf.er. To quan-
tify this dependence for the Pade filter, we (unconventionally) define a,, the dimensionless

wavenumber cutoff, such that % = H(a,), whereby

1 —cosag)(1 + cosa)

_
H(a,ac) = 2(1 ~ cosa.cos )

(34)

Figure 1 compares the transfer functions of the Pade filter for selected values of c.
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Figure 1: Transfer function of one-parameter family of second-order low-pass filters of Pade
type for selected values of dimensionless wavenumber cutoff .
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